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INTRODUCTION

Large-scale forcing (scales greater than 500 km) is the dominant factor in the generation,

maintenance, and dissipation of cirrus cloud systems. However, the analyses of data ac-

quired during the first Cirrus IFO have highlighted the importance of mesoscale processes

(scales of 20 to 500 km) to the development of cirrus cloud systems (Starr and Wylie,

1989). Unfortunately, Starr and Wylie found that the temporal and spatial resolution of

the standard and supplemental rawinsonde data were insufficient to allow an explanation

of all of the mesoscale cloud features that were present on October 27-28, 1986. Below we

will describe how dynamic initialization, or four-dimensional data assimilation (FDDA),

can provide us with a method to address this problem. Then we will describe our first

steps towards application of FDDA to FIRE.

FOUR-DIMENSIONAL DATA ASSIMILATION

In FDDA, asynoptic data are allowed to modify a numerical forecast by adding additional

terms to the equations in the model which will force, or 'nudge', the model state towards

the observations. The additional terms are weighted according to the proximity, both in

time and space, of the observation to the model grid point. In this manner, the resultant

modeled state reflects the observations in the vicinity where they were taken, and utilizes

the model's forecast ability to determine the atmospheric state in data-sparse regions.

For FIRE, the supplemental rawinsonde network data from the first Cirrus IFO and the

anticipated time-continuous profiler data from the second Cirrus IFO can be systematically

processed to form four-dimensional datasets describing the IFO's.

The FDDA method has been successfully applied to the Penn State/NCAR mesoscale

model in studies of tropical cyclones (Anthes, 1974), severe weather (Kuo and Guo, 1989),

terrain-induced flow (Stauffer and Seaman, 1987), and developing continental cyclones

(Stauffer and Seaman, 1988). The study by Kuo and Guo has particular relevance to

the Kansas IFO since they studied the impact, on mesoscale simulations, of FDDA of a

network of 77 simulated wind profilers. Assimilation of the profiler data was effective in

recovering mesoscale circulations which were not resolved by the conventional analyses

of the rawinsonde data. In particular, the divergence field, which is critical for vertical

motions, clouds, and precipitation, was significantly improved. Kuo and Guo suggest that

even a small network of profilers, such as that which will be available in 1990, will improve

the analyses; however, the impact is greatest in the region covered by the profilers.
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PSU/NCAR MESOSCALE MODEL

As a first step towards applying FDDA to the FIRE IFO's, we have made a preliminary

simulation over the continental United States from 0000 to 1200 UT, November 1, 1986

with the basic version of the PSU/NCAR mesoscale model without FDDA.

The PSU/NCAR mesoscale model used here is described in detail by Anthes et al. (1987).

It is a hydrostatic, three-dimensional, primitive-equations model with a terrain-following

vertical coordinate (a). The model has a sophisticated multi-level planetary boundary

layer parameterization and simple diagnostic parameterizations of convective and non-

convective precipitation. The experiment described here was performed on a 61X46 grid

with a 70-km mesh. We define the model top at 100 mb and the boundaries of the vertical

levels at a = 1.0, 0.99, 0.95, 0.9, 0.8, 0.7, 0.6, 0.5, 0.43, 0.36, 0.29, 0.22, 0.15, 0.1 and 0.0.

These midpoint of these layers are approximately at 995, 970, 930, 865, 775,685,595, 520,
455, 390, 330, 265, 210, and 145 mb.

NOVEMBER 1, 1986 STUDY

We use NMC 2.5 ° analyses, interpolated to our grid, to initialize the model at 0000 UT

November 1, 1986 (Fig. la). During this period a ridge lies to the east of Wisconsin and

a trough to the west. Wisconsin is in generally WSW flow at 0000 UT and nearly zonal
flow at 1200 UT. We then carry out a 12-hour simulation.

The results of this simple experiment demonstrate the ability of even a simple version of the

mesoscale model to develop mesoscale features starting from the initial highly smoothed

NMC analyses. As an example, we show in Figs. la-c the 0000 UT and 1200 UT analyses,

and the 1200 UT simulation of 325 mb relative humidity. Both analyses show a smooth

field with high values of relative humidity aligned parallel with the large-scale wave. In

the 1200 UT simulation the horizontal gradients are sharper, especially along the northern

boundary, and the separation in the moisture field over Wisconsin is more distinct than in

the analyses. In Figs. 2a-c we show the 0000 UT and 1200 UT analyses and the 1200 UT

simulation of relative humidity and potential temperature along a cross-section running

southeast from the point A in Fig. 1 just north of International Fall_', through Wisconsin,

to the point B on the Indiana-Ohio border. A comparison with the 0000 UT and 1200 UT

analyses (Fig. 2a-b) indicates that dry air at mid-levels has descended north of the front

and that the relative humidity has increased at upper-levels directly above and south of

the front. The 1200 UT simulated thermal structure (Fig. 2c) is nearly identical to the

1200 UT analyses. The 1200 UT simulated relative humidity exhibits the same trends seen

in the analyses. However, the horizontal and vertical gradients of relative humidity are

sharper and three maxima in the relative humidity field, not found in the NMC analyses,

have developed between 300 and 200 mb (9.5 and 12 km). At the southern two maxima,

the model has injected moisture above the tropopause. This is unrealistic and probably

related to the simple moisture physics used for this experiment and to the coarse vertical

resolution at the model top. Nevertheless, the model has developed vertical and horizontal

structure in the moisture fields with scales of order 200 km that were not found in the

NMC analyses. We are currently comparing both the analyses and the simulation with
the observations.
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FUTURE APPLICATIONS

The general structure of the PSU/NCAR mesoscale model and itswidespread use allow

us to easilyoptimize the model for this study. In subsequent runs we will increase model

resolution to 40 km in the horizontal and to 0.5 km in the verticalin the upper halfof the

troposphere and in the vicinity of the tropopause. We will improve the initialconditions

by using the rawinsonde data to desmooth the NMC analyses. Then we willuse the FDDA

scheme to produce a four-dimensional dataset for the firstCirrus IFO. We willthen have

the capability and experience required for handling the large amount of profilerdata that

isexpected during the second Cirrus IFO. We have long-range plans to replace the model

moisture scheme with an explicitprediction scheme (Toon et al.,1988) that will resolve

the spectra of iceparticles.We willalso add a detailed radiative transfer scheme (Toon et

al.,1989). A discussion of these topics,however, isbeyond the scope of thispaper.
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Fig. 1:325 mb fields of relative humidity (solid lines,

contour interval of 10%) and geopotential height (dashed

lines, contour interval of 12 dam) for November 1, 1986.

(a) 0000 UT NMC analysis and model initial condi-

tion; (b) 1200 UT NMC analysis; and (c) 1200 UT
PSU/NCAR mesoscale model simulation. The line A-B

denotes the location of the cross-section shown in Fig. 2.
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